Objective:
Prove right triangles congruent using the Hypotenuse-Leg Theorem

G.SRT.5:
Use congruence...criteria to solve problems and prove relationships in geometric figures.
Vocabulary Builder

hypotenuse (noun) **hy PAH tuh noos**

Related Word: leg

Definition: The hypotenuse is the side opposite the right angle in a right triangle.

Main Idea: The hypotenuse is the longest side in a right triangle.

Theorem 4-6 Hypotenuse-Leg (HL) Theorem and Conditions

Theorem

If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the triangles are congruent.

If . . .

$\triangle PQR$ and $\triangle XYZ$ are right triangles, $\overline{PR} \cong \overline{XZ}$, and $\overline{PQ} \cong \overline{XY}$

Then . . .

$\triangle PQR \cong \triangle XYZ$
To use the HL Theorem, the triangles must meet three conditions. Complete each sentence with right or congruent.

There are two __ triangles.

The triangles have __ hypotenuses.

There is one pair of __ legs.

Problem 1 Using the HL Theorem

Got It? Given: \(\angle PRS\) and \(\angle RPQ\) are right angles, \(\overline{SP} \cong \overline{QR}\)

Prove: \(\triangle PRS \cong \triangle RPQ\)

13. Complete each step of the proof.

- **Given**
 - \(\angle PRS\) and \(\angle RPQ\) are right angles.
 - \(\overline{SP} \cong \overline{QR}\)
 - Reflexive Prop. of \(\cong\)
 - \(\overline{PR} \cong \overline{PR}\)

- **Definition of right triangle**
 - \(\triangle PRS\) and \(\triangle RPQ\) are right triangles.

- **HL Theorem**
 - \(\triangle PRS \cong \triangle RPQ\)
Problem 2: Writing a Proof Using the HL Theorem

Got It? Given: $\overline{CD} \cong \overline{EA}$, \overline{AD} is the perpendicular bisector of \overline{CE}
Prove: $\triangle CBD \cong \triangle EBA$

14. Circle what you know because \overline{AD} is the perpendicular bisector of \overline{CE}.

- $\angle CBD$ and $\angle EBA$ are right angles
- $\angle CBD$ and $\angle EBA$ are acute angles.
- B is the midpoint of \overline{AD}.
- B is the midpoint of \overline{CE}.

15. Circle the congruent legs.

- \overline{AB}
- \overline{CB}
- \overline{DB}
- \overline{EB}

16. Write the hypotenuse of each triangle.

- $\triangle CBD$ \overline{CD}
- $\triangle EBA$ \overline{EA}

17. Complete the proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) $\overline{CD} \cong \overline{EA}$</td>
<td>1) Given</td>
</tr>
<tr>
<td>2) $\angle CBD$ and $\angle EBA$ are right \angle s.</td>
<td>2) Definition of \perp bisector</td>
</tr>
<tr>
<td>3) $\triangle CBD$ and $\triangle EBA$ are right \triangle s.</td>
<td>3) Definition of right \triangle</td>
</tr>
<tr>
<td>4) $\overline{CB} \cong \overline{BE}$</td>
<td>4) Definition of \perp bisector</td>
</tr>
<tr>
<td>5) $\triangle CBD \cong \triangle EBA$</td>
<td>5) HL Theorem</td>
</tr>
</tbody>
</table>